A Spectral Domain Decomposition Approach for Steady Navier-Stokes Problems in Circular Geometries
نویسندگان
چکیده
In this study, a spectral collocation domain decomposition method is developed for the numerical solution of second and fourth order problems in circular domains. The method is applied to the Navier-Stokes equations and its performance is investigated in the cases of the stream function and the stream function-vorticity formulations.
منابع مشابه
Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder
In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...
متن کاملBivariate Spline Method for Navier-Stokes Equations: Domain Decomposition Technique
On Schwarz's domain decomposition methods for elliptic boundary value problems, submitted for publication, 1996. 6. M. J. Lai and P. Wenston, Bivariate spline method for numerical solution of steady state Navier-Stokes equations over polygons in stream function formulation, submitted, 1997. Bivariate spline method for numerical solution of time evolution Navier-Stokes equations over polygons in
متن کاملA 4OEC scheme for the biharmonic steady Navier-Stokes equations in non-rectangular domains
Recently the biharmonic form of the Navier-Stokes (N-S) equations have been solved in various domains by using second order compact discretization. In this paper, we present a fourth order essentially compact (4OEC) finite difference scheme for the steady N-S equations in geometries beyond rectangular. As a further advancement to the earlier formulations on the classical biharmonic equation tha...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملMassively Parallel Solution Techniques for Higher-order Finite-element Discretizations in CFD
The purpose of this paper is to present techniques to solve higher-order finite element discretizations on massively parallel architectures. Implicit schemes are considered as a means of achieving mesh independent convergence rates for both time dependent problems and steady state solutions obtained through pseudo-transient continuation. Domain decomposition preconditioners are presented for th...
متن کامل